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SUMMARY

The instability character of a wake in the presence of a free surface is examined by a recently developed GDQ
(generalized differential quadrature) numerical method. It is shown that at low Froude number the wake near a
free surface is convectively unstable, but when the Froude number is increased further it becomes absolutely
unstable. The effect of water depth on the stability property of the wake flow is also investigated. It is found that
the influence of water depth on the critical point of instability is limited to at most 20% variation in the complex
frequency, while the change in temporal growth rate is also limited to about 209097 by John Wiley &

Sons, Ltd.
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1. INTRODUCTION

Many investigators have studied the instability properties of the wake of an object moving in an infinite
fluid. Their results reveal that the two-dimensional wake behind both blunt and streamlined bodies is
extremely sensitive to the external excitation. However, the instability characteristics of the near- and
far-wake flows are quite different. The two-dimensional wake immediately behind an object is always
absolutely unstable, whereas the wake far away from the object is convectively unstable.

Recently, in an effort to study the stability of the deformation of the ocean surface resulting from
interaction with a submerged vorticity field, Triantafyllou and Dimasvestigated the instability
property of a floating or half-submerged body. For the situation of low Froude number they
considered the initial separated flow past a floating object (in the shape of a hydrofoil and a circular
cylinder) as one-half of the ‘double-body’ flow. Using the measured wake velocity profile behind an
object in an infinite medium, they imposed on the shear-free condition on the symmetric half of the
profile to simulate the presence of a free surface and studied the resulting property of the wake flow.
Their results show that at low Froude number the wake immediately behind a ‘floating’ two-
dimensional object is convectively unstable. Beyond a certain value of Froude number, however, it
becomes absolutely unstable. When the Froude number is very large, the instability character
approaches the case of submergence in an infinite fluid. This result indicates that the presence of a
free surface can drastically alter the instability properties and large-scale unsteady patterns in two-
dimensional wakes. At low Froude number the presence of a free surface has a stabilizing effect,
suppressing somewhat the unsteadiness of the wake. At high enough Froude number, large-amplitude
waves appear that cause the instability of the wake to become absolute.
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In this work the instability of wake flows near a free surfaée re-examined using a recently
developed numerical method, the generalized differential quadrature (GDQ) procedure of Shu and
Richards® The GDQ method is a finite-difference-based scheme derived from a method of
differential quadrature proposed by Bellma al.” Compared with standard finite difference
discretization in which the order of approximation is normally much less than the number of grid
points, the GDQ method is optimum in the sense that it achieves the highest possible order of
approximation for a given number of grid points. Thus for a given order of accuracy the GDQ method
requires much fewer grid points than the standard second- and fourth-order finite difference schemes.
In practice the GDQ method is only limited by the truncation error of floating point arithmetic
operations. The small number of grid points required to attain a specified order of accuracy ultimately
translates into a vast saving in computing time and storage, which is borne out in our calculations.

Besides verifying the findings of Triantafyllou and Dintashich were based on a second-order
finite difference approximation, and demonstrating the efficiggaggeriority of the GDQ method, the
present paper also investigates the influence of water depth on the stability of the wake profiles of a
hydrofoil and a circular cylinder. It is found that for the wakes following a hydrofoil the water depth
has little influence on the nature of the instability as the critical point of instability has at most 20%
variation in the complex frequency as the depth decreases from infinity. The temporal growth rate
also appears to have limited variation as the water depth is reduced. These observations are equally
valid for the wake flow due to a circular cylinder, which may suggest a limited effect of depth on the
stability properties of wake flows in the presence of a free surface.

2. MATHEMATICAL FORMULATION OF THE INSTABILITY PROBLEM
2.1. Flow stability

We choose a Cartesian co-ordinate frame for the problem as follows: the poséiis is directed

from left to right and lies along the initially undisturbed surface of the water; the positads

points vertically upwards. The fluid is assumed to be incompressible and inviscid. We denote the two-
dimensional parallel primappasic velocity field by {(y), 0). A small-amplitude normal mode
perturbation is added to the basic mean flow(y), which has the form (u,v)=

(9/3y, —a/9x)p(y) exp[i(kx — wt)]. Here w and k represent the complex frequency and complex
wave number of the perturbation respectively. The disturbance fungtipnobeys the well-known
Rayleigh equatiofi,i.e.

(kU — w)(¢” —k?p) —kU"¢p =0, y<0O. 1)

Here a superscript prime denotes the ordinary derivative taken with respact the normal
component of velocity is set to zero on the solid bottom surface. Hence

¢(y) =0 aty=—h, )

whereh is the water depth measured from the free surface.

Let n(x, t) = eV denotes the displacement of the free surface resulting from the perturbation.
The free surface boundary conditions are the continuity of normal velocity and pressure. The
linearized forms of these conditions are

(0 = KU =Ky, 3)
(kUw - CU)d)\//v - kU\;vqsw = _f)wa (4)

INT. J. NUMER. METH. FLUIDS, VOL24: 1079-1090 (1997) © 1997 by John Wiley & Sons, Ltd.
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where f,, is the complex amplitude of pressure perturbatiory at 0. The subscript ‘w’ denotes
evaluation ay = 0. We further note from the dynamic balance of forces at the mean free surface that

ﬁw = gﬁ: (5)
whereg is the acceleration due to gravity. Combining equations (3)—(5), we have
FrikUy, — )¢}, — K¢, =0, (6)

whereFr = U_,/./(gb) is the Froude number and the no-shear free surface boundary condition has
been used. The above equations are considered as having been non-dimensionalized with respect to
the infinite freestream velocity , for velocity and the half-width of the wakey, for linear
dimension of length.

The Rayleigh equation (1), the solid surface boundary condition (2) and the free surface boundary
condition (6) constitute a closed system of homogeneous equations that governs the stability of the
mean flowU (y).

2.2. The Generalized Differential Quadrature method

Equations (1), (2) and (6) can be cast into the form of a generalized eigenvalue problem for a given
k with @ as an eigenvalue anglas an eigenfunction. There exist many schemes which can be used to
discretize the above equations. Here we have chosen the GDQ method.

The GDQ metholl expresses the derivatives of the unknown functipfy) (assumed to be
sufficiently differentiable) as linear combinations of the values of the functions at the grid points.
Thus for a second-order ordinary differential equation we can write

N

by(yi) = J; ;P (Y;), (7
N

Py (yi) = X; b o (y;), ®)
j=

whered,(y;) and,,(y;) denote the first- and second-order derivativeg@f respectively at the grid
points{y;,i=1,...,N}.

A smooth function can always be represented to any order of accuracy in terms of polynomial
functions from any complete polynomial basis. The weighting coefficients are determined from this
knowledge by requiring that the selected polynomials from the basis satisfy the representations (7)
and (8), interpreted as linear constraint relationships. Various polynomial bases may be used. The
employment of Legendre and Chebyshev polynomials results in determinatiomsdodb;; which
are subject to a restriction on the co-ordinates of the grid points. The use of Lagrange interpolation
polynomials, which is the basis of the GDQ method, allows complete freedom on the choice of grid
pointsy;, which makes the method particularly useful. The use of Lagrange interpolation polynomials
results in the following determination for the weighting coefficients. The weighting coeffiagmts
the first-order derivative are given by

M®(y;) L
a=————— for l, 9
TV ©
N
aii - — Z aij fOI’j - i, (10)
j=1j#i

© 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VQ24: 1079-1090 (1997)



1082 Q. D ZHANG, B. C. KHOO AND K. S. YEO

where

MOy = T -y (11)

N
=L

The weighting coefficients;; for the second-order derivative are given by

1 .
b = 2a;; (aii — m) forj #1, 12)

bii = —_ Z blj fOI’j = | (13)

N
j=Lj#
From the expressions for the coefficieasandby; it is apparent that the GDQ method utilizes all the
information contained in the grid functiap(y;) in obtaining the respective derivatives. Hence in this
way the said method can be considered as a variant of the finite difference method (FDM), with the
highest possible order of accuracy (depending on the number of grid points used). Since the GDQ
method is a highly accurate scheme, it permits the use of greatly reduced number of grid points to
achieve a given level of numerical accuracy. It is this advantage that makes the use of GDQ method
attractive in solving the present problem. The reader is referred to Reference 6 for further details.

2.3. Dispersion relation

To cast the Rayleigh equation (1) and the boundary conditions (2) and (6) in the form of a matrix
linear eigenvalue problem i, we rewrite the free surface boundary condition (6) as

Fr(kU,, — o)A —k?¢p, =0, y=0, (14)

Fr(kU, — )¢, =A, y=0. (15)

This reformulation allows us to avoid the tenf in the original free surface boundary condition (6)
(which would prevent the formation of the linear eigenvalue problem) at the expense of introducing
an unknown constarA which is solved as part of a matrix eigenvalue problem.

Using the GDQ scheme to discretize the governing Rayleigh equation (1) and the boundary
conditions given in (14) and (15) results in the matrix (dispersion) equation

D(k, ) = ([A] — 0[B)(A, ¢1, by, ... y)" =0, (16)

whereA] and [B] are complex matrix functions of the wave numixeand the velocity profiléJ; and

¢; (i=1,2,...,N) are the values of the eigenfunctigry) at the grid points of the mesh covering

the flow domain. The eigenvalues and their corresponding eigenvectdi, ¢;, ..., ¢y} for
prescribed velocity profile and complex wave numbkeray be obtained numerically by the standard

Q-Z algorithm without the need for any guess values. In this the present method has the advantage
over the standard shooting procedures which generally requires some prior knowledge of the
eigenvalues. An extensive search or trial-and-error scheme may have to be instituted when such prior
knowledge is absent. For problems where most of the eigenvalues represent damped eigenstates
(w; < 0), the matrix eigenvalue method will generally allow all the unstable eigenstates to be located.
With shooting methods it is difficult to be certain that all the unstable modes have been found. The
disadvantage is that the computational effort involved is greater for the matrix eigenvalue method.
However, since the identification of instabilities is treson d'&re for stability studies, the matrix
approach is much to be preferred if computing resource is not an overriding limitation.
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2.4. Spatial-temporal instabilities

In the context of linear stability theory the unstable space-time evolution of an unstable
disturbance mode is described by the Green function defined by

—iw ikx
G(x,t):J do® tJ P 17)

L 2n ) 2n Dk, )’

whereD(k, w) = 0 is the dispersion relation. The integrations in the Laplace—Fourier integral (17)
must be carried out on contours placed in the domains of absolute convergence of the complex
frequencyw-plane and complex wave numbkiplane. The stability character is determined by
deforming (lowering) the Laplace contodr towards thew,-axis. The Fourier contoufF is
concomitantly adjusted (deformed) when necessary within its domain of absolute convergence to
separate thé&(w, )-roots which originate from opposite (top and bottom) halves ofkipdane, in

order to preserve the analyticity of theintegrand

dk eikx

£ 2nD(k, )’ (18)

I(X,w):J

The deformation of th&-contour to preserve the analyticity bfs inhibited, however, when twk-

roots originating from opposite halves of tkeplane coalesce (intersect). Such coalescence, which
‘pinches’ the F-contour at the root coalescence point, produces a singularity When such a
singularity occurs, which effectively prevents thecontour from being deformed completely onto
the w,-axis, we have an absolute instability, which is an instability that grows in time at all points in
space, i.e.

tIim G(x,t) - oo for all fixed x. (19)

Otherwise, there is at most convective instability, which is an instability that propagates in one
direction as it grows, so that at any fixed pointhe disturbance ultimately decays to zero, i.e.

tIim G(x,t) —» 0 forall fixed x. (20)

A detailed account of the theory is given by Bérs.

Kupfer et al!° developed a useful procedure for identifying absolute instability. The procedure is
based upon the mapping of const&atontours into thes-plane through the dispersion relation. The
occurrence of a cusp-like point in the-plane indicates the existence of a doukdeoot (or root
coalescence), which is a necessary but not sufficient condition for the existence of a ‘pinch point’ and
absolute instability. The identification of a ‘pinch point’ or absolute instability is made by further
counting the number of times the-contour ofk; = O intersects the vertical lin@, = constant drawn
vertically upwards from the estimated location of the branch cusp point. An odd number of
intersections indicates a genuine pinch point and therefore an absolute instability mode. Convective
instabilities, on the other hand, are given by causal spatially growing (upstream or downstream)
eigenmodes for real eigenfrequencies. They may be identified by the intersectipa ®fcontours
with the w,-axis (i.e.w; =0) in thew-plane. The causality condition is realized if a vertical line (i.e.
w,; = constant) drawn vertically upwards from the intersection point cut;tee contour in thew-
plane an odd number of times.
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3. RESULTS AND DISCUSSION
3.1. Comparison with previous work: GDQ and FDM approach

In the absence of any measured or theoretical wake velocity profile of a half-submerged hydrofoil
positioned at the air—water interface, the velocity profile of a thin symmetrical NACA 0003 hydrofoil
obtained experimentally by Mattingly and CrimiRah an infinite fluid is adopted with the proviso
that the free surface conditions be applied at the point of symmetry of the said velocity profile. Since
the time-averaged wake velocity distribution of a hydrofoil (or any object) as affected by the vortex
street—hence implying that there will be differences in the time-averaged flow properties in the wake
of a floating hydrofoil when compared with an infinite fluid—one should view the results of a
stability test on the effect of a free surface qualitatively for possible inference of the true wake on a
moving floating body. In this section we shall only consider the case of an infinite (or very large)
water depth.

As stated by Triantafyllou and Dimaghe near-wake velocity profile measured by Mattingly and
CriminaF is given as

1

U(y) =Uy — Uy — Uc}m’

—o0 <y <0, (21)

where the centreline velocity, is taken as @012 as the streamwise location behind the trailing edge

of the hydrofoil atx=0-003 (I being the length of the NACA 0003 hydrofoil) amd=0-88137. (All

linear dimensions are non-dimensionalized with respectivi, tine half-width of the wake.) The
infinite water depth is simulated nominallyyt — 8b. It may be noted that the flow profile has one
inflection point and is strongly unstable; to be more precise, it exhibits absolutely unstable behaviour
in an unbounded fluid* For the wake profile (21), results &f-contours in the comples-plane,
computed using the GDQ algorithm fbr =5.5, are shown in Figure 1. The results shown belong to
branch 2 instability; branch 1 results are stable for this case. The distribution &f-toatours is

wi 0.2 7
0.1
0.0
-0.1
-0.2
-0.3 T T T T T T T
0.0 0.2 0.4 0.6 0.8
Wr
Figure 1. Instability curves for hydrofoil &r =55 and different water depths: curves 1-6, branck 20, —0-2, —0-4,
—06, —08, —1.0;, ——, h=8; -, h=4; —.— h=3; - — — —h=2
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closely identical with results obtained using the regular grid, second-order, three-point FDM (not
shown) and concurs with similar FDM result of DimdsThe presence of a cusp point wiih > 0,
and which also satisfies the intersection criterion, indicates the existence of absolute instability.

Table | compares the-eigenvalues of an unstable eigenstate close to the cusp point in Figure 1,
calculated using the second-order FDM on a regular interval mesh and the GDQ method on a
Chebyshev—Gauss—Lobatto distribution mesh with different numbers of grid points. The CPU timings
are also given. (The calculation is carried out on a DEC 7600 machine and the CPU time is
obtained by utilizing the subroutine X05BAF of the NAG Library.) Rde=50 the GDQ method
requires about 50% more processing time than the FDM for the determination of atb-the
eigenvalues. (Only the unstable eigenvalues, of which there is just one, are given in Table I.) This is
not surprising, because the GDQ method requires more arithmetic operations to set up the coefficient
matrix. The GDQ method is, however, much more accurate, as a comparison with the reference
eigenvaluew = 0-54853+i0-01576 will show; the reference value was calculated using a highly
accurate shooting procedure. The GDQ result Wtk 50 is slightly more accurate than the FDM
result withN =400, but requires much less CPU time, a ratio of close to 380. Granted that the FDM
approach has to process many more eigenvalues (since the Q-Z algorithm solves for all the
eigenvalues of the dispersion matrix equation), the ratio of CPU times per eigenvalue still works out
to be a factor of about 50 in favour of the GDQ method. The large number of eigenvalues obtained by
the FDM is not an advantage, because the unstable eigenmodes, which are important eigenmodes, can
generally be detected even with fairly modest valuedNofLarge N merely allows the unstable
eigenmodes to be obtained with greater accuracy. For a comparable level of accuracy in the results,
say GDQ withN =50 and FDM withN =400, the GDQ method also requires considerably smaller
processing memory because of the smaller size of the matrix involved. Incidentally, our results for
FDM with N=200 and GDQ withN=30 are in agreement for the same eigenvalue to the three
decimal digits quoted by Dimds.For the GDQ method we may also note that the increase in CPU
time is roughly linear withN, whereas for the FDM the growth is much more rapid.

Further computations of the instability plots ©f versusw, at differentk-contours forFr ranging
from 0.5 to 55 in intervals of 10 were carried out using both the FDM based on 200 grid points and
GDQ with a nominal 50 grid points. The general distributions in dhplane for given values df
show similar features to those of Reference 11 (not shown)FFarl.5, two branches of instability
are detected, one occurring at low wave number (called branch 1 as in Reference 11) which is close to
the varicose mode in an infinite fluid and the other occurring in the higher-wave-number region

Table I. Comparison of results and CPU times between regular grid, second-order FDM and non-regular grid
GDQ method. Then-eigenvalue given corresponds to the cusp point in Figuier £5-5, k=12, k= —1.0

Grid Result CPU time CPU time (s)
Method points ©) (s) per eigenvalue
FDM N=50 o, =0-54497,; =0-01238 02176 000435
N=100 ;= 0-54803,w; = 0-01557 1453 001453
N=200 o, =0-54847,; =0-01577 12324 006162
N =300 w,=0-54851,wi =0-01578 46413 015471
N =400 o, =0-54852,; =0-01577 122412 030603
GDQ N=16 ;= 0-53962,w; =0-01629 0126 000788
N=20 ®,=0-55044,; = 0-01533 0153 000765
N=30 ;= 0-54872,w; = 0-01552 0163 000543
N=40 o, =0-54854,; = 0-01571 0241 000603
N=50 o, =0-54853,0; =0-01575 0324 000648
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(known as branch 2, like the sinuous mode in an infinite fluid for supercritical flows). Careful
examination of the critical points aig; in the w-plane shows good general agreement of the critical
point as a function of the Froude number between GDQ and the FDM: for branch 2 the agreement of
critical points is identical up to three decimal digits, while the concurrence of results for branch 1
instability is within 5%. Further comparison is carried out for the maximum temporal growth rate
(wi)max (Not shown). The maximum temporal growth rate is the maximum valug &r thek, =0
contour in thew-plane. The computed results @b;Jax Using the GDQ method and the FDM show

that agreement of the maximum temporal growth rate is up to at least three decimal digits and this
occurs for both branches of the instability curves. Overall, the computations using GDQ and the FDM
yield fairly similar results, which in turn compare very well with Diamas’s results. This clearly
establishes GDQ as an alternative numerical method which promises a vast saving of computational
effort for the study of linear stability analysis.

Dimas further evaluated the stability of a cylinder wake by using the velocity profile of an
unbounded flow around the cylinder at a Reynolds number (based on the freestream velocity and the
diameter of the cylinder) of 140,000 obtained experimentally by Cantwédlhe said experimental
data were curved fitted by Triantafyllcet al* as follows:

U(y) =1 — A[l — tanh(ay? — f)], —oo <y <0. (22)

Here the velocity profile at the streamwise location behind the cylindgfdit 1 (whered is the
diameter of the cylinder), which correspondsite- 0-75, o = 0-68162 and; = 0-32, was adopted for

the study. A, « and§ are curve-fitting parameters.) The vertical co-ordinate is non-dimensionalized
with respect tob, the half-width of the cylinder wake. The ‘infinite’ depth is simulated at four
cylinder diametersl, equivalent to &b beneath the free surface. As in the previous case, the effect of
a free surface with the boundary condition given in (6) is imposed at the point of symmetry of the
cylinder wake profile. Our computations using the GDQ approach with a nominal 50 grid points yield
the typical distribution ofv; versusw, for different contours ok; at a Froude number of3 shown in
Figure 2. The plots depict a general distribution of both branch 1 and 2 instability curves similar to
that obtained by Dimas. The cusp point in theglane indicates the presence of a critical point whose
temporal growth rate is denoted hy,. Figure 3 shows the variation iy as a function of the
Froude number. The distribution of; for the case of ‘infinite’ water depth compares generally well
with the results of Dimas obtained using the FDM. For branch 2, agreement with Dimas’s results in
exact up to three decimal digits, while in branch 1, adrconcurs to within 5%. Figure 3 shows that

woi IS positive forFr > 2.6, implying that the instability is absolute in nature for these flows. For
smaller Froude numbers the flow is at most convectively unstable. Results for maximum temporal
growth rate @;)max @s a function ofFr are shown in Figure 4;af)max iS positive throughout. For

Fr < 0-5 the maximum temporal growth rate comes from branch 1, while for l&fg€w;)maxhas its

origin in branch 2.

Overall, we have demonstrated the efficiency and superiority of the GDQ method over the standard
second-order FDM in the study of the linear stability analysis of wake flow near a free surface. The
GDQ method vyields results of comparable accuracy to the second-order FDM at a small fraction of
computing resources. GDQ is used in the next section to analyse in greater detail the effect of depth
on the stability of the wake flows examined above.

3.2. Effect of water depth on the linear stability of wake flow

In the absence of any experimental data or analytical result determining the wake velocity profile
in the presence of a free surface dimite depth, it is assumed that the near-wake velocity profile of a
hydrofoil as expressed in equation (21) is applicable. The boundary condition at the solid bottom is
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Wi 0.4 - 4
0.2 -~
1
0.0
- O 2 I \2—_/ Q‘ 8
6 s
-0.4 - 3 7
I
-0.6 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 35
Wr
Figure 2. Instability curves for circular cylinder Bt =1-5 and different water depths: curves 1-3, branck; 0, —0.-7,
—1.4; curves 4-8, branch (=0, —0.7, —1.4, —2.1, —2.8; —, h=9.7; ..., h=4.8

that the normal component of velocity perturbation be zero, i.e. equation (2). Provided that the latter
boundary condition is applied at sufficient depth from the free surface so that the mean wake velocity
value is still limited to at least, say, 90% of that at infinite depth, which is equivalent to dimensionless
depthh(= h'/b)>2, whereb is the half-width of the wake, it is reckoned that the present analysis
may provide some idea of the effect of finite depth on the nature of the wake flow instability.

For Fr =5.5 with dimensionless depths= 4, 3 and 2 the distribution ab; versusw, for different
contours ok; are plotted in Figure 1 for the purpose of comparison with the case of ‘infinite’ depth. It
is quite apparent that while the said distributions of gikeand differenth maintain the same general
shape, the distributions are definitely not identical. For the cabe-a8 and 4, while the contours of

0.5 1
] B2
1 P |
0.0 -
g ]
i s =0 7 B2
—0.5 4 00000 h=7.3 B2
1 ooooo h=4.8 B2
] aaaas h=2.0 B2
i ek =9 ,7 B1
—1.0 H +++t++ h=7.3 B1
4 Khkkk4h h=4.8 B1
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Figure 3. Temporal growth rate at critical point versus Froude number for circular cylinder velocity profile at different water
depths for branch 1 and 2 instabilities. The line is drawn through results pertaining $7 (or dimensional depthd}

O
o
—_
o
N
@]

© 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VQ24: 1079-1090 (1997)



1088 Q. D ZHANG, B. C. KHOO AND K. S. YEO

0.5

(®)max

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Fr

Figure 4. Maximum temporal growth rate versus Froude number for circular cylinder velocity profile at different water depths.
The line is drawn through results pertainingtte-9-7 (or dimensional depthd}

ki=0 and—0-2 are very close, the differences become more notable for srkalldowever, despite
the differences in the distribution, the cusp point which indicates the presence of a critical point as
denoted bywg; does not differ very much; numericallyyg; is given by 0015815 and differs by less
than 1% from €015752 ath=8. On comparing the infinite depth with the even shallower depths
h=3 and 2, there is an increasingly greater difference in the distribution of coristamith wo;
becoming slightly less positive; numericallyy; at h=2 differs by about 15%.

For the other tests carried out in the rangé&pf= 4.-5-05, decreasing in intervals of(Q, it is found
that the general shape of the constgastontours pertaining th=4, 3 and 2 bears some resemblance
to the case oh=8, with more differences detected for the smalielt is also found that the critical
point mg; did not differ much betweeh =8 and 4, with at most a variation of less than 5%; the

wi 0.2

|

0.0

-0.2

-0.4
-0.6
-0.8

-1.0

TN I I N T I A I A

-1.2 T
0.0 0.5

Figure 5. Instability curves for hydrofoil &r =0-5 and different water depths: curves 1-7, branck 0, —0-5, —1.0,
—15, —2.0, —2.5, —2.6; curves 8-10, branch g,= —-05, —1.0, —1.5; —, h=8; -, h=4; - — h=3; - - - —h=2
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Figure 6. Temporal growth rate at critical point versus Froude number for hydrofoil velocity profile at different water depths for
branch 1 and 2 instabilities. The line is drawn through results pertainimg-t8

variation betweerh=8 and 2 is greater but is still within a band of less than 20%, without any
discernible trend. The above observation is also true for branch 1 of;thg stability plot, as shown
for Fr=0-5 with h=8, 4, 3 and 2 in Figure 5. Although the constdgcontours of differenth
maintain a generally similar shape, the differences in the detailed distributions have resulted in only
slightly different values of the critical poinbg;. A summary of the effect of different depthon the
critical wg; with respective td-r is shown in Figure 6. This proves a clear indication that the depth
has a somewhat limited influence on the nature of the wake stability of a ‘half-submerged’ hydrofoil.
In Figure 7 the maximum temporal growth rate },ax versuskr for differenth is shown. Again the
influence of depth onuf;)maxis fairly limited, with differences from the value pertaining to ‘infinite’
depth of less than 20%.

Further tests are carried out to evaluate the effect of depth on the stability of the wake flow of a
cylinder in the presence of a free surface. The effect of finite depth is simulated at dimensional
heightsh’ = 3d, 2d and 084d, equivalent to b, 4-8b and 20b respectively, beneath the free surface

0.15

(®Dmax
0.10

4
-

0.05

Figure 7. Maximum temporal growth rate versus Froude number for hydrofoil velocity profile at different water depths. The
line is drawn through results pertaining fe=8
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for comparison with the ‘infinite’ depth set at = 4d (or 9-7b). A typical plot of w; versusw, for
Fr=1.5 is shown in Figure 2 foh=4-8 for comparison with the ‘infinite’ depth case taken to be
h=09.7. It is clear that while there are some differences in the con$tazuntours their general
shapes are still similar and there is only a small variation in the critical point. Fairly similar behaviour
of the w—w, distribution for different Froude numbers at different depths is also noted (not shown),
culminating in the evaluation of critical points which only differ from at infinite depth by less than
about 15%; see Figure 3. Results of the maximum temporal growth ¢glg.{ for variousFr at
differenth are shown in Figure 4, which depict changes of less than 10% from that at ‘infinite’ depth.
These results suggest that the effect of depth on the instability of the wake flow behind a cylinder in
the presence of a free surface is generally mild.

4. CONCLUSIONS

The present work applies the recently developed method of generalized differential quadrature
(GDQ) to the solution of the stability problem of wake flows near a free surface. The method is far
more efficient than the second-order finite difference method (FDM) in the determination of the
unstable eigenvalues, requiring CPU times which are more than one or two orders of magnitude less
than that of the FDM for a given accuracy. While the computational overhead to implement the GDQ
method is higher than for the FDM, its very high-order accuracy implies that only a small number of
grid points are required.

Our study indicates that wake flows near a free surface in water of infinite depth are convectively
unstable at low Froude number and absolutely unstable at higher Froude number. (Specifically,
Fr = 4.5 for wake flows behind a hydrofoil arfet = 2.6 for wake flows behind a circular cylinder.)
These results are in good agreement with the findings of Triantafyllou and PanasDimas'!

Our analysis of the effect of depth on the linear stability of the wake flow downstream of a half-
submerged body assuming the shape of a hydrofoil and a circular cylinder indicates that it has a
limited influence on the nature of the instability. Comparison made with the reference ‘infinite’ depth
case for cases with depth>2 only shows a variation of at most 20% in the critica};. The
corresponding maximum temporal growth raig)f,.x for the different depths also has variation of
less than 20%.
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